KERALA PUBLIC SCHOOL , JAITRAWAS (Rewari) Holiday homework (Physics) Class:-11th Section :-A

1) Explain what is meant by dimensions of a physical quantity, its dimensional formula and dimensional equation.

2)Derive the dimensional formulae for acc. due to gravity, constant of gravitation, surface tension, coefficient of viscosity, coefficient of elasticity, Planck's constant, gas constant, torque, specific gravity and impulse.

3) The rate of flow (V) of a liquid flowing through a pipe of radius r and pressure gradient (P/I) is given by Poiseuille's equation V = $\frac{\pi}{8} \frac{pr^4}{ln}$ Check the dimensional correctness of this relation.

4) The frequency (v) of an oscillating drop may depend upon radius (r) of the drop, density (p) of liquid and the surface tension (S) of the liquid. Deduce the formula dimensionally.

5) A small spherical ball of radius r falls with a velocity v through a liquid of coefficient of viscosity n.

Obtain an expression for viscous drag F on the ball assuming that it depends upon r, v and n.

6) Discuss how errors propagate in sum, difference, product and division of quantities.

7)The voltage across a lamp is (6.0 + 0.1) volt and the current passing through it is (4.0+0.2)A. Find the power consumed with error limits.

8)A physical quantity x is calculated from $x = \frac{ab^2}{\sqrt{c}}$ Calculate % error in x, when % error in measuring a, b, c are 4, 2 and 3 respectively.

Section :-B Single Correct Answer Type

- 1. [ML⁻²T⁻²] represents dimensional formula of which of the following physical quantities?a) Energyb) pressurec) Torqued) Pressure gradient
- 2. The velocity v of water waves may depend on their wavelength (λ), the density of water (ρ) and the acceleration due to gravity (g). The method of dimensions gives the relation between these quantities as

a)
$$v^2 \propto \lambda^{-1} \rho^{-1}$$
 b) $v^2 \propto g\lambda$ c) $v^2 \propto g\lambda \rho$ d) $g^{-1} \propto \lambda^3$

3. If *L*, *C* and *R* denote inductance, capacitance and resistance respectively, then which of the following combination has the dimension of time?

a)
$$\frac{C}{L}$$
 b) $\frac{1}{RC}$ c) $\frac{L}{R}$ d) $\frac{RL}{C}$

4. The length, breadth and thickness of a block is measured to be 50 cm, 2.0 cm and 1.00 cm. The percentage error in the measurement of volume is
a) 0.8 % b) 8% c) 10% d) 12.5%

5. Given, potential difference $V = (8 \pm 0.5)$ volt and current $I = (2 \pm 0.2)$ A. The value of resistance *R* is

a)
$$4 \pm 16.25\%$$
 b) $4 \pm 6.25\%$ c) $4 \pm 10\%$ d) $4 \pm 8\%$

6. The dimensions of time constant are

	a) [M ⁰ L ⁰ T ⁰]	b) [M ⁰ L ⁰ T]	c) [MLT]	d)None of these		
7.	A physical quantity <i>A</i> is related to four observables <i>a</i> , <i>b</i> , <i>c</i> and <i>d</i> as follows					
	a^2b^3					
	$A = \frac{1}{c\sqrt{d}}$					
	The percentage errors	of measurement in <i>a, b,</i>	<i>c</i> and <i>d</i> are 1%, 3%, 2%	and 2% respectively.		
	What is the percentage	What is the percentage error in the quantity <i>A</i> ?				
	a) 12%	b)7%	c) 5%	d)14%		
8.	Which one of the follow	ving pairs of quantities	and their unit is proper i	match?		
	a) Electric field-coulom	ıb/m	b) Magnetic flux-weber	r		
	c) Power-farad		d)Capacitance-henry			
9.	The dimensions of emf	in MKS is				
	a) $[ML^{-1}T^{-2}Q^{-2}]$	b) $[ML^{-2}T^{-2}Q^{-2}]$	c) $[MLT^{-2}Q^{-1}]$	d) $[ML^2T^{-2}Q^{-1}]$		
10.	The physical quantity h	naving the dimensions [$M^{-1}L^{-3}A^{2}$] is			
	a) Resistance		b) Resistivity			
	c) Electrical conductivi	ty	d) Electromotive force			
11.	The equation of alterna	ating current is $I = I_0 e^{-1}$	^{-t/CR} , where t is time, C i	s capacitance and R is		
	resistance of coil, then	the dimensions of C R is	S			
	a) $[MLT^{-1}]$	b) [M ⁰ LT]	c) [M ⁰ L ⁰ T]	d) None of these		
12.	If $f = x^2$, then the relat	tive error in f is				
	$2\Delta x$	$(\Delta x)^2$	Δx	d) $(\Lambda x)^2$		
	$\frac{x}{x}$	x	$\frac{x}{x}$	(Δx)		
13.	If error in radius is 3%	, what is error in volum	e of sphere?			
	a) 3%	b)27%	c) 9%	d)6%		
14.	If the length of rod <i>A</i> is (3.25 ± 0.01) cm and that of <i>B</i> is (4.19 ± 0.01) cm, then the rod <i>B</i> is					
	longer than rod A by					
	a) (0.94 \pm 0.00) cm	b) (0.94 ± 0.01) cm	c) (0.94 ± 0.02) cm	d) (0.94 ± 0.005) cm		
15.	The position of a partic	ele at time <i>t</i> is given by t	the equation $x(t) = \frac{v_0}{4}$ (2)	$(1 - e^{At}), v_0 = \text{constant}$		
	and $A > 0$. Dimensions of v_0 and A respectively are					
	a) $[M^0LT^0]$ and $[M^0L^0T]$	·-1]	b) $[M^0LT^{-1}]$ and $[M^0L']$	T^{-2}]		
	c) $[M^0LT^{-1}]$ and $[M^0L^0]$	T]	d) $[M^0LT^{-1}]$ and $[M^0L^0]$	T^{-1}		
16.	Which of the following sets of quantities have same dimensional formula?					
	a) Frequency, angular f	requency and angular n	nomentum			
	b) Surface tension, stre	ss and spring constant				
	c) Acceleration, momen	ntum and retardation				
	d) Work, energy and to	rque				
17.	The dimensions of $e^2/4$	$4\pi\epsilon_0 hc$, where e, ϵ_0, h and	nd <i>c</i> are electronic charg	e, electric permittivity,		
	Planck's constant and v	velocity of light in vacuu	Im respectively, are			
	a) [M ⁰ L ⁰ T ⁰]	b) $[ML^0T^0]$	c) $[M^0LT^0]$	d) $[M^{0}L^{0}T^{1}]$		
18.	Dimensions of impulse	are same as that of				
	a) Force	b) Momentum	c) Energy	d)Acceleration		
19.	The SI unit of length is	the metre. Suppose we	adopt a new unit of leng	th which equal <i>x</i> metre		
	The area of 1 m ² expre	ssed in terms of the nev	w unit has a magnitude	-		

	a) <i>x</i>	b)	<i>x</i> ²	c)	x^{-1}	d)	x^{-2}
20.	Unit of surface tension	on is					
	a) Nm^{-1}	b) Nm	-2	c) N ² m	-1	d)Nm ⁻	3
21.	If the value of the resistance is 10.845Ω and the value of the current is 3.23 A, then the				nen the		
	potential difference	is 35.0293	35 V. its value	in correct s	ignificant figu	ures would	be
	a) 35 V	b) 35.0) V	c) 35.03	3 V	d) 35.02	29 V
22.	A body of mass $m =$	3.513 kg	is moving alor	ng the $x - ax$	xis with a spe	ed of 5.00 i	ns ⁻¹ . The
	magnitude of its mor	nentum is	s recorded as				
	a) 17.6 kg ms ⁻¹	b) ^{17.5}	565 kg ms^{-1}	c) ^{17.5}	6 kg ms^{-1}	d) ^{17.5}	7 kg ms ⁻¹
23.	A screw gauge gives	the follow	ving reading v	when used to	o measure th	e diameter	of a wire.
	Main scale reading :	0 mm					
	Circular scale readin	g : 52 divi	sions				
	Given that 1 mm on a	main scale	e corresponds	to			
	100 divisions of the	circular so	cale.				
	The diameter of wire	e from the	above data is	;			
	a) 0.052 cm	b) 0.02	26 cm	c) 0.00	5 cm	d)0.52	cm
24.	The modulus of elast	ticity is di	mensionally e	quivalent to	O		
	a) Strain			b) Forc	e		
05	c) Stress			d)Coef	ficient of visc	osity	
25.	The length of a simp	le pendul	um is about 10	JU cm know	n to an accur	acy of 1 m	m. Its period of
	oscillation is 2s determined by measuring the time for 100 oscillations using a clock of 0.1 s					CIOCK OF U.1 S	
	resolution. what is the	he accura	cy in the deter	rmined valu	le of g?	4) 20/	
26	A plate has a length ($0 \int 0.5$	% cm and broad	CJ 0.1%)) cm Thon th	ujz% 20. aroa of ti	ha plata is
20.	A plate has a length ((3 ± 0.1)	± 0.01) cm ²	(10)	± 0.001) cm ²	$\frac{1}{2}$ (10	± 1 cm ²
	a) (10 \pm 0.2) cm ²	b) ⁽¹⁰	<u> </u>	c) (10	<u> </u>	d) ⁽¹⁰	<u> </u>
27.	The energy (E) , and gular momentum (L) and universal gravitational constant (G) are choser					(G) are chosen	
	as fundamental quantities. The dimensions of universal gravitational constant in the						
	dimensional formula of Planck's constant (h) is						
	a) Zero	b)-1		c) 5		d)1	
20	16 2 0 10=6		10-5	3			
28.	If 3.8×10^{-6} is added to 4.2×10^{-5} giving due regard to significant figures, then the result					en the result	
	will be 10^{-5}	h	× 10=5		< 10-5	d) Norr	of the charge
20	A highly rigid cubica	DJ4.0 I block 4	X 10 ⁻⁵	CJ 4.5 X	Lic fived rigi	dly on to a	e of the above
29.	A nignly rigid cubical block A of small mass M and side L is fixed rigidly on to another cubical				face of A		
	completely covers th	sions and e unner f	race of R The l	ower face o	of R is rigidly	held on a h	orizontal
	surface A small force	e F is ann	lied perpendi	cular to one	of the side fa	aces of A Af	fter the force is
	withdrawn. block A	executes	mall oscillatio	ons, the tim	e period o wh	nich is giver	ı bv
				، ريان ا	<u></u>]	<u> </u>
	a) 2π√ <i>MηL</i>	b)2π	$\left \frac{M\eta}{L}\right $	c) 2π		d)2π -	
	•	1		V	η	$\sqrt{2}$	ηL
30.	The dimensions of m	agnetic fi	eld in M, L, T a	and C (could	omb) is given	as	

	a) $[MLT^{-1}C^{-1}]$	b) $[MT^2C^{-2}]$	c) $[MT^{-1}C^{-1}]$	d)[MT ⁻² C ⁻¹]	
31.	Find the dimensions of electric permittivity				
	a) $[A^2M^{-1}L^{-3}T^4]$	b) $[A^2 M^{-1} L^{-3} T^0]$	c) $[AM^{-1}L^{-3}T^4]$	d) $[A^2M^0L^{-3}T^4]$	
32.	32. Which of the following is dimensionless?				
	v^{2}	h^{v^2g}	$r) \frac{vg}{vg}$	$d) u^2 r a$	
	rg	r	c) r	uj <i>v</i> rg	
33.	The number of significant figures in all the given numbers 25.12, 2009, 4.156 and 1.217 $ imes$				
	10 ⁻⁴ is				
	a) 1	b) 2	c) 3	d)4	
34.	Which of the following	sets have different dime	ensions?		
	a) Pressure, Young's modulus, Stress		b) Emf, Potential difference, Electric potential		
~ -	c) Heat, Work done, Energy		d) Dipole moment, Electric flux, Electric field		
35.	Force constant has the	same dimensions as			
	a) Coefficient of viscos	ity	b) Surface tension		
26	c) Frequency	$a - t^2$	d)Impulse		
30.	The dimensions of $\frac{a}{b}$ in	the equation $p = \frac{a-c}{bx}$	where <i>p</i> is pressure, <i>x</i> is	s distance and <i>t</i> is time,	
	are				
	a) $[M^2 L T^{-3}]$	b) $[MT^{-2}]$	c) [LT ⁻³]	d)[$ML^{3}T^{-1}$]	
37.	The damping force of a	an oscillating particle is o	observed to be proportion	onal to velocity. The	
	constant of proportion	ality can be measured ir	1		
	a) Kg s^{-1}	b) Kg s	c) Kg ms ⁻¹	d) Kg m ^{-1} s ^{-1}	
38.	Dimensions of $\frac{1}{1000}$, where symbols have their usual meaning, are				
	a) [L ⁻¹ T]	b) $[L^2 T^2]$	c) $[L^2 T^{-2}]$	d)[LT ⁻¹]	
39.	In an experiment, we r	neasure quantities <i>a, b</i> a	nd <i>c</i> . Then <i>x</i> is calculate	d from the formula $x =$	
	$\frac{ab^2}{a}$. The percentage errors in a, b, c are +1%, +3%, and +2% respectively. The percentage				
	c_3^3 . The percentage errors in a, b, c are $\pm 1/0, \pm 0/0,$ and $\pm 2/0$ respectively. The percentage				
	a) $+1\%$	b)+4%	c) 7%	d)+13%	
40.	The physical quantity	which is not a unit of ene	ergy is	a) <u> </u>	
	a) Volt-coulomb	b) MeV-sec	c) Henry (ampere) ²	d)Farad-(volt) ²	
41.	If the unit of force is 1	kN, the length is 1 km ar	nd time is 100 s, what wi	ll be the unit of mass?	
	a) 1 kg	b) 100 kg	c) 1000 kg	d) 10000 kg	
42.	The relative density of	the material of a body I	the ratio of its weight in	air and the loss of its	
	weight in water. By using a spring balance, the weight of the body in air in measured to be 5.00				
	± 0.05 N. The weight of the body in water is measured to be 4.00 ± 0.05 N. Then the maxim				
	possible percentage er	ror in relative density is			
	a) 11%	b)10%	c) 9%	d)7%	
43.	In the equation $y = a$ s	$\sin(\omega t + kx)$, the dimen	sional formula of ω is		
	a) $[M^0 L^0 T^{-1}]$	b) $[M^0 L T^{-1}]$	c) $[ML^0T^0]$	d) $[M^0 L^{-1} T^0]$	
44.	The dimensions of Plan	nck's constant are			
	a) $[M^2 L^2 T^{-2}]$	b)[MLT ⁻²]	c) $[ML^2T^{-2}]$	d) $[ML^2T^{-1}]$	
45.	A public park, in the fo	rm of a square, has an a	rea of (100 ± 0.2) m ² . Th	ie side of park is	

	a) (10 ± 0.01)m	b) (10 ± 0.1) m	c) (10.0 ± 0.1) m	d) (10.0 ± 0.2) m			
46.	The dimensional formula of magnetic permeability is						
	a) [M ⁰ L ⁻¹ T]	b) $[M^0 L^2 T^{-1}]$	c) $[M^0 L^2 T^{-1} A^2]$	d) [MLT ⁻² A^{-2}]			
47. What is the dimensional formula of $\frac{\text{planck's constant}}{\text{linear momentum}}$?							
	a) [M ⁰ L ⁰ T ⁰]	b) [M ⁰ L ⁰ T]	c) [M ⁰ LT ⁰]	d) $[MLT^{-1}]$			
48.	Consider a new system	of units in which $c(spe$	ed of light in vacuum), h	(Planck's constant) and			
	G(gravitational constant	nt) are taken as fundam	ental units. Which of the	e following would			
	correctly represent ma	iss in this new system?					
	hc	Gc	hG				
	a) $\frac{G}{G}$	b) $\left \frac{d}{h}\right $	c) $\frac{1}{c}$	d)√ <i>hGc</i>			
19	\mathcal{N}^{-} What is the area of a di	N ¹ isc of radius 1.1 cm ²	N				
17.	a) $3,8028571 \text{ cm}^2$	h) $3 8029 \text{ cm}^2$	c) 3.803 cm^2	d) 3.8 cm ²			
50	I at I denote the self-in	ductance of coil which i	s in series with a canaci	tor of canacitance (
50.	Which of the following	has the unit second?	is in series with a capaci	tor of capacitance c.			
	a) \sqrt{IC}	h) C/L	c) (L	d) L^2/C^2			
51.	If $F = 6\pi n^a r^b v^c$	5)572	0) 01	a)2 /0			
011	Where $F =$ viscous for	۳e					
	n = coefficient of visco	sitv					
	r = radius of spherical	body					
	v = terminal velocity of	of the body.					
	Find the values of <i>a</i> , <i>b</i> a						
	a) $a = 1, b = 2, c = 1$		b) $a = 1, b = 1, c = 1$				
	c) $a = 2, b = 1, c = 1$		d) $a = 2, b = 1, c = 2$				
52. The measured mass and volume of a body are 23.42 g and 4.9 cm ³ r				pectively with possible			
error 0.01 g and 0.1 cm ³ . The maximum error in density is nearly							
	a) 0.2%	b)2%	c) 5%	d)10%			
53. If $v = \frac{A}{t} + Bt^2 + Ct^3$ where v is velocity, t is time and A, B and C are constants, then t				onstants, then the			
dimensional formula of B is							
	a) [M ⁰ LT ⁰]	b)[ML ⁰ T ⁰]	c) [M ⁰ L ⁰ T]	d) $[M^{0}LT^{-3}]$			
54.	If <i>K</i> denotes coefficient	t of thermal conductivity	y, d the density and c the	e specific heat, the unit of			
	<i>X</i> , where $X = K/dc$ with	X, where $X = K/dc$ will be					
	a) cm sec ^{-1}	b) cm ² sec ⁻²	c) cm sec	d) cm ² sec ⁻¹			
55.	Which of the following	pairs has same dimensi	ions?				
	a) Current density and	charge density	b) Angular momentum	and momentum			
	c) Spring constant and	surface energy	d) Force and torque				
56.	The refractive index of	ctive index of a material is given by the equation $n = \frac{A+B}{\lambda^2}$, where A and B are					
	constant. The dimensional formula for <i>B</i> is						
	a) $[M^0 L^2 T^{-1}]$	b) $[M^0 L^{-2} T^0]$	c) $[M^0 L^2 T^{-2}]$	d) $[M^{0}L^{2}T^{0}]$			
57.	What is the dimension	al formula of mc^2 , wher	e the letters have their u	isual meanings?			
	a) [MLT ⁻¹]	b) [ML ⁰ T ⁰]	c) $[ML^2T^{-2}]$	d) $[M^{-1}L^3T^6]$			
58.	In the equation $X = 3Y$	Z^2 , X and Z have dimen	sions of capacitance and	d magnetic induction			

	respectively. In MKSQ system, the dimensional formula of Y is				
	a) $[M^{-3}L^{-2}T^{-2}Q^{-4}]$	b) [ML ⁻²]	c) $[M^{-3}L^{-2}Q^4T^8]$	d) $[M^{-3}L^{-2}Q^{4}T^{4}]$	
59.	The percentage errors	in the measurement of l	ength and time period o	f a simple pendulum are	
1% and 2% respectively. Then the maximum error in the measurement of acceleratio					
	gravity is				
	a) 8%	b)3%	c) 4%	d)5%	
60.	Given $\pi = 3.14$. the value of π^2 with due regard for significant figures is				
	a) 9.86	b) 9.859	c) 9.8596	d)9.85960	
61.	. One slug is equivalent to 14.6 kg. A force of 10 pound is applied on a body of 1 kg. The				
	acceleration of the body is				
	a) $44.5 \mathrm{ms}^{-2}$	b) 4.448 ms ⁻²	c) 44.4 ms ⁻²	d)None of these	
62.	Which has not the sam	e unit as other?			
	a) Watt-sec	b) Kilowatt-hour	c) eV	d)Js	
63.	A resistor of 10 k Ω having tolerance 10% is connected in series with another resistor of 20 k Ω				
	having tolerance 20%. The tolerance of the combination will be approximately				
	a) 10%	b)13%	c) 17%	d)20%	
64.	Ampere-hour is the unit of				
	a) Quantity of charge	b) Potential	c) Energy	d)Current	
65.	Given that $2l\sqrt{\frac{m}{T}}$, where <i>l</i> is the length of a string of linear density <i>m</i> , under tension <i>T</i> ha the				
	same dimensional formula as that of				
	a) Mass	b) Time	c) Length	d) Mole	